R404A replacements in Commercial refrigeration.
Agenda

- **F-Gas: business consequences**
- Introduction to HFOs and Solstice® family
- **R404A replacement:**
 - R407F
 - Solstice® N40 (R-448A)
 - HDR110
F-Gas – Control of Use in Commercial Refrigeration

New Installation Bans*
(only main bans affecting Refrigeration shown here)

Stationary Refrigeration Equipment requiring HFC >2500 GWP

New Commercial Refrigerators / Freezers (hermetically sealed systems) >150 GWP

Centralised multipack systems >40kW capacity using HFC >150 GWP / except primary circuit (not distributed) of cascade system where <1500 GWP is acceptable

RAC & H/Pump equip. pre-charged with F-gases must be included in a registered Quota system beginning 2017

Virgin F-gases >2500 GWP for servicing ref equip. With charge size of >40 T CO₂-eq (~10kg R404A)

Recycled and reclaimed F-gases with >2500 GWP for servicing ref equip with a charge size of >40 T CO₂-eq

Exemptions include Military equipment and refrigeration applications below -50 Deg C

Maintenance & Service Bans*
(only those affecting Refrigeration shown here)

NOTE: R407F (<1825 GWP) repl. for R404A - can be used for servicing without end date (beyond 2030...)

Latest Technologies in Refrigeration and Air Conditioning - XVI European Conference Milano, 12th - 13th June 2015
F-Gas – Phase Down

Phase Down Mechanism

- What is your Strategy for Change?
 - Refrigerant leak / charge reduction
 - Educate your team and your customers on this change
 - Improve your understanding of the low GWP alternatives to R404A
 - Understand the minor differences in ‘how they are applied’
 - Become more comfortable with the differences → glide / flammability / high pressures / different system technologies etc..
 - Refrigerant choice – STOP using R404A wherever possible
 - Mindset - Change provides Opportunities for your business

F-gas Regulations will Challenge our Industry Opportunities

<table>
<thead>
<tr>
<th>Year</th>
<th>CO₂ eq.</th>
<th>Sales Capped % of 2009-2012 Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>-7%</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>-37%</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>-55%</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>-69%</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>-76%</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>-79%</td>
<td></td>
</tr>
</tbody>
</table>
Introduction to Solstice® family

<table>
<thead>
<tr>
<th>Solstice® HFO molecules</th>
<th>Nonflammable (ASHRAE A1)</th>
<th>Mildly flammable (ASHRAE A2L)</th>
<th>Examples of potential applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-134a</td>
<td>Today</td>
<td>Solstice® yf GWP* < 1</td>
<td>Auto A/C, Vending, Refrigerators</td>
</tr>
<tr>
<td>GWP=1430</td>
<td></td>
<td>Solstice® ze GWP* < 1</td>
<td>Chillers, CO₂ Cascades Refrigerators</td>
</tr>
<tr>
<td>R-123</td>
<td>Solstice® zd GWP* = 1</td>
<td></td>
<td>Centrifugal Chillers</td>
</tr>
<tr>
<td>GWP= 77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GWP = Global Warming Potential

*IPPC5
Introduction to Solstice® family

<table>
<thead>
<tr>
<th>Solstice® Blends</th>
<th>Examples of potential applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non Flammable (ASHRAE A1)</td>
<td></td>
</tr>
<tr>
<td>R-134a GWP=1430</td>
<td>Solstice® N13 (R-450A) GWP* = 547</td>
</tr>
<tr>
<td>R-404A GWP=3922</td>
<td>Solstice® N40 (R-448A) GWP* = 1273</td>
</tr>
<tr>
<td>R-22 GWP=1810</td>
<td>Solstice® N20 GWP* = 891</td>
</tr>
<tr>
<td>R-410A GWP=2088</td>
<td>Solstice® L41 (R-447A) GWP* = 572</td>
</tr>
</tbody>
</table>

*IPPC5

Today

Coming soon
R407F: Independent Measured Performance Comparison

Efficiency comparisons (Independent verification)

- Important improvements in MT applications ~ 10%
 - Climate / system specific / optimisation during retro-fit
- Still large improvements at LT conditions ~ 6%
- Clear overall improvement in Energy Efficiency shown by R407F

Considerable reduction in operational / running costs

Latest Technologies in Refrigeration and Air Conditioning - XVI European Conference Milano, 12th - 13th June 2015
Introducing N40 (R448A): Capacity & COP

BITZER Software: semi-hermetic compressor (4GE-23Y)

Mean Pressures / Suct. Temp = -4°C (LT); 20°C (MT) / Useful Superheat = 5K / Subcooling = 0K

- Under system-like conditions, both R407F and N40 (R448A) provide capacity above 95% of R404A in low and medium temp applications
- Under medium temp system conditions, R407F and N40 (R448A) provide the best efficiency (COP)
- Under low temp system conditions, N40 (R448A) provides the highest COP

Latest Technologies in Refrigeration and Air Conditioning - XVI European Conference Milano, 12th - 13th June 2015
R448A (best) and R407F (better) provide the highest combined energy efficiency.

Due to lower discharge temperature, R448A is less likely than R407A or R407F to require liquid injection**.

**Requirements will vary depending on the actual operating conditions.
Emerson Performance: Solstice® N40 (R-448A)

- Copeland Liquid and EVI Scroll
- Medium and Low Temperature

Scroll System Analysis
@ -6.7°C / 48.9°C

- Capacity (Midpoint/SH 5K Performance)
 - Baseline
 - R404A
 - N40
 - 17% > R404A

- COP (Midpoint/SH 5K Performance)
 - Baseline
 - R404A
 - N40
 - 11% > R404A

Semi-Hermetic System Analysis
@ -31.6°C / 43.3°C

- Capacity (Midpoint/SH 5K Performance)
 - Baseline
 - R404A
 - N40
 - 15% > R404A

- COP (Midpoint/SH 5K Performance)
 - Baseline
 - R404A
 - N40
 - 10% > R404A

‘N40 provides superior Energy Efficiency to that of R-404A with reduced GWP’

Qualified for Use
3rd Party evaluations: Solstice® N40 (R-448A)

Oak Ridge National Laboratory (US)
- Supermarket System Evaluation
 ✓ Reduced compressor power by 3.7%
 ✓ Increased refrigeration capacity by 7.5%
 ✓ Increased system COP by 11.6%

Tewis Smart Systems
- Laboratory Test in Simulated Supermarket set-up vs R-404A

Consumption during the whole testing period in a non-optimized drop-in test prior to corrections on temperature and humidity.

“After this laboratory test, we are convinced that R-448A complements the current portfolio of alternatives for refrigeration systems by providing the lowest GWP, safest, maximum savings refrigerant for optimized characteristics in an R-404A direct retrofit.”

Note: Tewis Smart Solutions (internal)
3rd Party evaluations: Solstice® N40 (R-448A)

Toshiba Refrigeration (Japan)
- Condensing Unit Performance trial
 - Ambient tests at 32°C & 43°C to JIS 8623 (std)
 - N40 showed 4-16% higher COP and excellent match in capacity

ASDA (UK)
- Successful >14 months trial store comparison
 - Improved capacity and efficiency vs. R404A
 - Simple retro-fit with minimal system adjustment
 - Discharge Temp close to R404A level (no liq injection required on LT)

‘Solstice N40 is well engineered refrigerant to meet requirement as an alternative to R404A’
Refrigerants roadmap: R-404A

Medium temperature and low temperature stationary refrigeration

Performax LT (R-407F) is preferred option
- Already commercial
- Homologated by most components manufacturers
- Proven experience in commercial, industrial and food service applications over Europe
- Closer cost to R-404A than Solstice N40

Solstice N40 (R-448A) could be interesting if:*
- Further GWP reduction is desired
 - Environmental goal
 - Tax country
- Slight improvement of T\(_{\text{dis}}\) vs R-407F is required
 - Solstice N40: T\(_{\text{dis}}\) still higher than R-404A
 - Solstice N40: T\(_{\text{dis}}\) still lower than R-22

Better

<table>
<thead>
<tr>
<th>Performax LT (R-407F)</th>
<th>Solstice® N40 (R-448A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>R-404A (A1, 3922 / 3943)</td>
</tr>
<tr>
<td>GWP 4(^{th}) / 5(^{th})</td>
<td>1824 / 1764</td>
</tr>
<tr>
<td>Class</td>
<td>A1</td>
</tr>
<tr>
<td>Potential app. Use</td>
<td>MT and LT stationary refrigeration</td>
</tr>
<tr>
<td>Drop-in (1) Cap.</td>
<td>Similar</td>
</tr>
<tr>
<td>Drop-in (1) Eff.</td>
<td>5% to 10% higher</td>
</tr>
<tr>
<td>Compressor (2)</td>
<td>Recip, Scroll, Screw</td>
</tr>
<tr>
<td>Comments</td>
<td>No TXV change, Higher T(_{\text{dis}}) in LT</td>
</tr>
<tr>
<td>Status</td>
<td>Commercial</td>
</tr>
</tbody>
</table>

1. Drop-in test in a non-optimized system
2. Suitable compressor technology, check with Honeywell technical department for qualified models
HDR110 (GWP<150): Self-Contained System Evaluation

- **ASHRAE 72 standard test:**
 - 3/4 HP Reach-in R404A Freezer placed in a chamber at 25°C
 - Cabinet volume filed with glycol/water test simulators and frozen food

- **Near drop-in test of HDR-110:**
 - TXV was slightly adjusted to provide appropriate superheat
 - No oil change required. Typical charge optimization carried out
 - Evaporator position inverted to **get counter-flow configuration**
24h Freezer Performance: HDR-110 vs R404A

- Capacity within 5% of R404A
- Efficiency increased by 6%
- Maximum discharge temperature (108°C) within compressor limits

HDR-110 under Evaluation by Major Equipment Manufacturers

Latest Technologies in Refrigeration and Air Conditioning - XVI European Conference Milano, 12th - 13th June 2015